Abstract. We derive a power series formula for the p-adic regulator on the higher dimensional algebraic K-groups of number fields. This formula is designed to be well suited to computer calculations and to reduction modulo powers of p.

1. Introduction

Let F be a p-adic local field. Then a p-adic regulator is a homomorphism of the form, for $s \geq 2$,

$$R_F : K_{2s-1}(O_F) \cong K_{2s-1}(F) \longrightarrow F.$$

There are lots of such p-adic regulators in the literature (see, for example, [13] §5). They have a number of important uses in arithmetic and geometry.

In ([2] II) we used R.H. Fox’s free differential calculus to design an algorithm (implemented in C) to construct explicit homology cycles for the general linear group whose Borel regulators were calculated by power series algorithm (implemented in MAPLE) designed from the explicit formula given in [3]. In the course of working on [2] we noticed that our power series also converged p-adically, giving rise to an elementary, complete account of the regulator of [4] which culminates in R_F of Corollary 4.3. Independently this construction was introduced in [15] and used to show that the regulators of [4] and [5] coincide up to a non-zero rational factor.

Our original motivation for developing the details of the p-adic regulator was similar to our motivation for [2], namely that the power series makes possible an algorithm for evaluating the p-adic valuation of the regulators on
homology classes in the general linear group of number rings such as those
given by the algorithm of [2]. In addition, for \(p \)-adic fields the power series
approach potentially offers a way round the \(p \)-adic analytic continuation prob-
lems which can sometimes bedevil the calculation of \(p \)-adic polylogarithms.
Also the values of the \(p \)-adic regulator of a \(p \)-adic local field \(F \) land in a
fractional ideal of \(F \) and a powers series formula can simply be truncated to
evaluate the regulator modulo a power of \(p \). In all other respects it should
be clear to the reader that our approach has nothing to add to the more
sophisticated methods of [5], [6] and [15].

We are very grateful to the referee and the editor for suggesting a number
of improvements to our exposition.

2. Functions on \(p \)-adic power series

Definition 2.1. Let \(F \) be a \(p \)-adic local field and let \(\mathcal{O}_F \) denote its valuation
ring. Let \(N \) be a positive integer and let \(M_N \mathcal{O}_F \) denote the ring of \(N \times N \)
mats with entries in \(\mathcal{O}_F \) topologised with the \(p \)-adic topology. Fix a
positive odd integer \(2s - 1 \) with \(s \geq 2 \). Let \(E(dx_0, \ldots, dx_{2s-1}) \) denote the
\(\mathcal{O}_F \)-exterior algebra on symbols \(dx_0, \ldots, dx_{2s-1} \) so that \(dx_i \wedge dx_j = -dx_j \wedge dx_i \)
when \(i \neq j \) and \(dx_i \wedge dx_i = 0 \). Consider the \(\mathcal{O}_F \)-algebra

\[
\hat{A} = M_N \mathcal{O}_F[[x_0, x_1, \ldots, x_{2s-1}]] \otimes_{\mathcal{O}_F} E(dx_0, \ldots, dx_{2s-1})
\]

and set

\[
\mathcal{A} = \hat{A} / \simeq,
\]

the quotient of \(\hat{A} \) by the ideal generated by \(1 - \sum_{i=0}^{2s-1} x_i \) and \(\sum_{i=0}^{2s-1} dx_i \).
Setting \(\|a\| = a_0 + a_1 + \ldots + a_{2s-1} \), let \(f \in \mathcal{A} \) have the form

\[
f = \sum_{a=(a_0, \ldots, a_{2s-1})} \sum_{u=0}^{2s-1} f(a, u)p^{\|a\|}x_0^{a_0} \cdots x_{2s-1}^{a_{2s-1}} dx_0 \wedge \cdots \wedge dx_u \wedge \cdots dx_{2s-1}
\]

with each \(a_j \) an integer greater than or equal to zero and \(f(a, u) \in M_N \mathcal{O}_F \).
Define a function, justified by Proposition 2.2,

\[
\Phi_{2s-1} : \mathcal{A} \longrightarrow F
\]

by the formula

\[
\Phi_{2s-1}(f) = \sum_{a=(a_0, \ldots, a_{2s-1})} \sum_{u=0}^{2s-1} (-1)^u \text{Trace} f(a, u)p^{\|a\|}a_0! \cdot a_1! \cdots a_{2s-1}! \over (\|a\| + 2s - 1)!.
\]

Hence \(\Phi_{2s-1}(f) \) term-by-term substitutes

\[
(-1)^u f(a, u)p^{\|a\|}a_0! \cdot a_1! \cdots a_{2s-1}! \over (\|a\| + 2s - 1)!
\]

for

\[
f(a, u)p^{\|a\|}x_0^{a_0} \cdots x_{2s-1}^{a_{2s-1}} dx_0 \wedge \cdots \wedge dx_u \wedge \cdots dx_{2s-1}
\]

and then takes the trace of the resulting matrix in \(M_N F \).
Proposition 2.2.
The series \(\Phi_{2s-1}(f) \) of Definition 2.1 converges \(p \)-adically in \(F \) for all \(e \geq 1 \) if \(p \) is odd and for all \(e \geq 2 \) if \(p = 2 \).

Proof:
The series \(\Phi_{2s-1}(f) \) is defined on \(\mathcal{A} \), not merely on \(\hat{\mathcal{A}} \), because a simple calculation shows that it is equal to the term-by-term integration of \(f \) over the standard \((2s-1)\)-simplex. This point of view will be important in §4.7, where the series is related to Hamida’s \(p \)-adic regulator formula [4].

If \(\nu_p \) is the \(p \)-adic valuation on the rational numbers and \([x] \) denotes the integer part of \(x \), then
\[
\nu_p(l!) = \sum_{i=1}^{\infty} \left\lfloor \frac{l}{p^i} \right\rfloor = \frac{l - \alpha(l)}{p-1}.
\]
Here, if \(l = \sum_{j \geq 0} b_j p^j \) with each \(b_j \) an integer in the range \(0 \leq b_j \leq p-1 \), we set \(\alpha(l) = \sum_{j \geq 0} b_j \).

Remark 2.3. The integer \(e \) appearing in Definition 2.1 is chosen merely in order to ensure that the series \(\Phi_{2s-1}(f) \) of converges \(p \)-adically in \(F \). The values in \(F \) of \(\Phi_{2s-1}(f) \) vary by a non-zero factor according to the choice of \(e \). However, in Definition 4.1, the formula for a \(p \)-adic regulator as a convergent series also contains a scalar factor depending on the choice of \(e \). The result is a \(p \)-adic series formula in Definition 4.4 which is independent of \(e \) and equal to that of [4].

3. A \(p \)-adic Cocycle

Definition 3.1. Let \(X_0, X_1, \ldots, X_{2s-1} \) be matrices lying in \(M_{N} \mathcal{O}_F \) with \(s \geq 2 \). Denote the \(2s \)-tuple \((X_0, X_1, \ldots, X_{2s-1})\) by \(X \). If \(\mathcal{A} \) is the algebra introduced in Definition 2.1, let
\[
\nu(X) = 1 + p^e \sum_{i=0}^{2s-1} X_i x_i \in \mathcal{A}.
\]
Hence \(\nu(X) \) is invertible in \(\mathcal{A} \) with
\[
\nu(X)^{-1} = 1 + \sum_{i \geq 1} (-1)^i p^{ei} B^i
\]
where $B = \sum_{i=0}^{2s-1} X_i x_i$. The derivative $d\nu(X) = dB = \sum_{i=0}^{2s-1} X_i dx_i$ also lies in \mathcal{A} and so

$$\nu(X)^{-1}d\nu(X) \in \mathcal{A}.$$ Furthermore $(\nu(X)^{-1}d\nu(X))^{2s-1}$ is homogeneous of weight $2s - 1$ in the differentials dx_i so that we have

$$\Phi_{2s-1}((\nu(X)^{-1}d\nu(X))^{2s-1}) \in F.$$

Denote by $G_{N,e} F$ the closed subgroup of $GL_N \mathcal{O}_F$ consisting of matrices which are congruent to the identity modulo p^e. With the p-adic topology on $G_{N,e} F$ the map

$$\hat{\Phi}_{2s-1} : (1 + p^e X_0, 1 + p^e X_1, \ldots, 1 + p^e X_{2s-1}) \mapsto \Phi_{2s-1}((\nu(X)^{-1}d\nu(X))^{2s-1})$$

lies in $\text{Map}_{d\nu}((G_{N,e} F)^{2s}, F)$, the p-adically continuous functions from the $2s$-fold cartesian product of $G_{N,e} F$ to F.

Theorem 3.2.

(i) If $Y_1, Y_2 \in G_{N,e} F$ then

$$\hat{\Phi}_{2s-1}(Y_1(1 + p^e X_0)Y_2, \ldots, Y_1(1 + p^e X_{2s-1})Y_2) = \hat{\Phi}_{2s-1}(1 + p^e X_0, \ldots, 1 + p^e X_{2s-1}).$$

Similarly, if $Y \in GL_N \mathcal{O}_F$,

$$\hat{\Phi}_{2s-1}(Y(1 + p^e X_0)Y^{-1}, \ldots, Y(1 + p^e X_{2s-1})Y^{-1}) = \hat{\Phi}_{2s-1}(1 + p^e X_0, \ldots, 1 + p^e X_{2s-1}).$$

(ii) If F/E is a Galois extension and $\sigma \in \text{Gal}(F/E)$ then

$$\sigma(\hat{\Phi}_{2s-1}(1 + p^e X_0, \ldots, 1 + p^e X_{2s-1})) = \hat{\Phi}_{2s-1}(1 + p^e \sigma X_0, \ldots, 1 + p^e \sigma X_{2s-1}).$$

(iii) The function $\hat{\Phi}_{2s-1}$ is a $(2s - 1)$-dimensional p-adically continuous cocycle on $G_{N,e} F$ with values in the trivial $G_{N,e} F$-module F.

Proof

It is elementary to check that the formula for $\Phi_{2s-1}(f)$ given in §2 coincides with applying the integral over Δ^{2s-1} term by term to the monomial differential $(2s - 1)$-forms in the power series f. By this observation, part (iii) is proved using Stokes’ Theorem, as in [3]. In fact, one needs only the elementary case of Stokes’ Theorem applied to a monomial $(2s - 1)$-form, say

$$\omega = x_0^a_0 x_1^a_1 x_2^a_2 \ldots x_{2s-1}^a_{2s-1} x_{2s} x_0 \wedge \ldots x_{2s-1} \wedge dx_{u} \wedge \ldots \wedge dx_{v} \wedge \ldots dx_{2s}$$

with $0 \leq u < v \leq 2s$ integrated over the standard $2s$-simplex. Part (i) is also proved as in [3] and part (ii) is obvious. □
4. The p-adic Regulator

Definition 4.1. As in §2.1, let F be a p-adic local field and let \mathcal{O}_F denote its valuation ring. From the localisation sequence for algebraic K-theory [10] and the vanishing of even K-groups of finite fields [11] we have an isomorphism

$$K_{2s-1}(\mathcal{O}_F) \cong K_{2s-1}(F)$$

for all $s \geq 2$. Let Hur denote the Hurewicz homomorphism to the integral homology of the infinite general linear group, with the discrete topology,

$$\text{Hur} : K_{2s-1}(\mathcal{O}_F) \longrightarrow H_{2s-1}(GL_{\mathcal{O}_F}; \mathbb{Z}).$$

When N is large the inclusion induces an isomorphism

$$H_{2s-1}(GL_N \mathcal{O}_F; \mathbb{Z}) \cong H_{2s-1}(GL_{\mathcal{O}_F}; \mathbb{Z}).$$

To be precise this is true for $N \geq \max(4s-1, 2s-1 + sr(\mathcal{O}_F))$ where $sr(\mathcal{O}_F)$ is Bass’s stable rank of \mathcal{O}_F [9].

Choosing N large we define

$$R_{N,F} : H_{2s-1}(GL_N \mathcal{O}_F; \mathbb{Z}) \longrightarrow F$$

to be equal to the composition of the transfer map

$$H_{2s-1}(GL_N \mathcal{O}_F; \mathbb{Z}) \xrightarrow{\text{Tr}} H_{2s-1}(G_{N,e}; \mathbb{Z})$$

with the homomorphism

$$\frac{1}{[GL_N \mathcal{O}_F : G_{N,e}]} \cdot [\Phi_{2s-1}], - > : H_{2s-1}(G_{N,e}; \mathbb{Z}) \longrightarrow F$$

given by pairing a discrete homology class with the continuous cohomology class of Theorem 3.2 (iii) and dividing by the index of $G_{N,e}$ in $GL_N \mathcal{O}_F$.

Explicitly, if d, ϵ are the residue degree and ramification index of F/\mathbb{Q}_p

$$[GL_N \mathcal{O}_F : G_{N,e}F] = |GL_N \mathbb{F}_p| |p^{N(d(e-1)}}.$$
We wish to apply this to the case in which \(J = GL_N \mathcal{O}_F, G = GL_{N+1} \mathcal{O}_F \) and \(H = G_{N+1} \mathcal{O}_F < G \). In this case \(zHz^{-1} = H \) and so

\[
H_{2s-1}(J; \mathbb{Z}) \xrightarrow{i_*} H_{2s-1}(G; \mathbb{Z}) \xrightarrow{\text{Tr}} H_{2s-1}(H; \mathbb{Z})
\]

\[
= \sum_{z \in J \cap G/H} H_{2s-1}(J; \mathbb{Z}) \xrightarrow{\text{Tr}} H_{2s-1}(J \cap H; \mathbb{Z})
\]

\[
\xrightarrow{i_*} H_{2s-1}(H; \mathbb{Z})^{(z^{-1}-z)^*} H_{2s-1}(H; \mathbb{Z}).
\]

From the second part of Theorem 3.2 (i)

\[
Res^{G_{N+1} \mathcal{O}_F}_{G_N \mathcal{O}_F} (\langle z^{-1} - z \rangle^* [\Phi_{2s-1}]) \in H_{2s-1}^{cts}(G_N \mathcal{O}_F; \mathbb{Z})
\]

is equal to \([\Phi_{2s-1}]\) for \(G_N \mathcal{O}_F \). Therefore

\[
[GL_{N+1} \mathcal{O}_F : G_{N+1} \mathcal{O}_F] R^i_{N,F} = [GL_{N+1} \mathcal{O}_F : GL_N \mathcal{O}_F \cdot G_{N+1} \mathcal{O}_F][GL_N \mathcal{O}_F : G_{N+1} \mathcal{O}_F] R^i_{N,F}
\]

so that \(R_{N,F} = R^i_{N,F} \). □

Corollary 4.3.

For large \(N \) the homomorphism

\[
H_{2s-1}(GL \mathcal{O}_F; \mathbb{Z}) \xrightarrow{i_*^{-1}} H_{2s-1}(GL_N \mathcal{O}_F; \mathbb{Z}) \xrightarrow{R^i_{N,F}} F
\]

is independent of \(N \).

Definition 4.4. Define a homomorphism

\[
\hat{R}_F : H_{2s-1}(GL \mathcal{O}_F; \mathbb{Z}) \longrightarrow F
\]

by the formula

\[
\hat{R}_F = \frac{(-1)^s(s-1)!}{(2s-2)!(2s-1)!} R_{N,F} i_*^{-1},
\]

in the notation of Corollary 4.3, where \(N \) is a large positive integer.

Theorem 4.5.

In the notation of Definitions 4.1 and 4.4 the composition

\[
R_F : K_{2s-1}(F) \cong K_{2s-1}(\mathcal{O}_F) \xrightarrow{\text{Hur}} H_{2s-1}(GL \mathcal{O}_F; \mathbb{Z}) \xrightarrow{\hat{R}_F} F
\]

is equal to the \(p \)-adic regulator homomorphism defined by Hamida in [4].

Remark 4.6. Using an explicit \(p \)-adically analytic cocycle it is shown in [15] that the Karoubi-Hamida \(p \)-adic regulator, which equals \(R_F \) by Theorem 4.5, coincides up to a non-zero rational factor with the Wagoner-Huber-Kings \(p \)-adic regulator of [16] and [5].
4.7. Proof of Theorem 4.5

First we should point out that [4] gives an explicit formula for a p-adic regulator only in the case when $F = \mathbb{Q}_p$. However the sketched proof showing that this construction is well-defined and coincides with Karoubi’s cyclic homology p-adic regulator applies equally well for general F. The regulator of [4] is defined by composing the Hurewicz homomorphism with the homomorphism, for large N,

$$R : H_{2s-1}(GL_N F; \mathbb{Z}) \rightarrow F$$

which is induced by sending a $2s$-tuple of matrices (Y_0, \ldots, Y_{2s-1}) in the bar resolution for $GL_N F$ to the integral

$$\frac{(-1)^s(s-1)!}{(2s-2)!(2s-1)!} \text{Trace} \int_{\Delta^{2s-1}} (\nu^{-1}d\nu)^{2s-1}$$

where $\nu = \sum_{i=0}^{2s-1} x_i Y_i$ where the x_i’s are the barycentric coordinates. The verification that this integral converges p-adically for a general $2s$-tuple is quite delicate and is carried out in the Appendix to [15].

In the proof of Theorem 4.5 we observed that the formula for $\Phi_{2s-1}(f)$ can be interpreted as term by term integration of the monomial $(2s-1)$-forms appearing in f over the $(2s-1)$-simplex. From this one sees that the construction which we have given uses the same integral as [4], but only in the situation where each Y_i lies in $G_{N,e} F$ in which case we saw in §2 and §3 that it is very easy to show p-adic convergence.

Let $j : G_{N,e} F \rightarrow GL_N O_F$ denote the inclusion. The above discussion shows that

$$[GL_N O_F : G_{N,e} F] R_{N,F} = R \cdot j_* \cdot Tr : H_{2s-1}(GL_N O_F; \mathbb{Z}) \rightarrow F$$

and the result follows since $j_* \cdot Tr = [GL_N O_F : G_{N,e} F]$. □

References

School of Mathematics, University of Sheffield, Sheffield S37RH, U.K.
E-mail addresses: v.snaith@sheffield.ac.uk and zackychoo@yahoo.com